25 research outputs found

    Using membrane computing for obtaining homology groups of binary 2D digital images

    Get PDF
    Membrane Computing is a new paradigm inspired from cellular communication. Until now, P systems have been used in research areas like modeling chemical process, several ecosystems, etc. In this paper, we apply P systems to Computational Topology within the context of the Digital Image. We work with a variant of P systems called tissue-like P systems to calculate in a general maximally parallel manner the homology groups of 2D images. In fact, homology computation for binary pixel-based 2D digital images can be reduced to connected component labeling of white and black regions. Finally, we use a software called Tissue Simulator to show with some examples how these systems wor

    An integrated model checking toolset for kernel P systems

    Get PDF
    P systems are the computational models introduced in the context of membrane computing, a computational paradigm within the more general area of unconventional computing. Kernel P (kP) systems are defined to unify the specification of different variants of P systems, motivated by challenging theoretical aspects and the need to model different problems. kP systems are supported by a software framework, called kPWORKBENCH, which integrates a set of related simulation and verification methodologies and tools. In this paper, we present an extension to kPWORKBENCH with a new model checking framework supporting the formal verification of kP system models. This framework supports both LTL and CTL properties. To make the property specification an easier task, we propose a property language, composed of natural language statements. We demonstrate our proposed methodology with an example

    Segmentation in 2D and 3D image using Tissue-Like P System

    Get PDF
    Membrane Computing is a biologically inspired computational model. Its devices are called P systems and they perform computations by applying a finite set of rules in a synchronous, maximally parallel way. In this paper, we open a new research line: P systems are used in Computational Topology within the context of the Digital Image. We choose for this a variant of P systems, called tissue-like P systems, to obtain in a general maximally parallel manner the segmentation of 2D and 3D images in a constant number of steps. Finally, we use a software called Tissue Simulator to check these systems with some examples

    Limits of the power of Tissue P systems with cell division

    Get PDF
    Tissue P systems generalize the membrane structure tree usual in original models of P systems to an arbitrary graph. Basic opera- tions in these systems are communication rules, enriched in some variants with cell division or cell separation. Several variants of tissue P systems were recently studied, together with the concept of uniform families of these systems. Their computational power was shown to range between P and NP ? co-NP , thus characterizing some interesting borderlines between tractability and intractability. In this paper we show that com- putational power of these uniform families in polynomial time is limited by the class PSPACE . This class characterizes the power of many clas- sical parallel computing model

    A Computational Complexity Theory in Membrane Computing

    Get PDF
    In this paper, a computational complexity theory within the framework of Membrane Computing is introduced. Polynomial complexity classes associated with di erent models of cell-like and tissue-like membrane systems are de ned and the most relevant results obtained so far are presented. Many attractive characterizations of P 6= NP conjecture within the framework of a bio-inspired and non-conventional computing model are deduced.Ministerio de Educación y Ciencia TIN2006-13425Junta de Andalucía P08–TIC-0420

    A Kernel-Based Membrane Clustering Algorithm

    Get PDF
    The existing membrane clustering algorithms may fail to handle the data sets with non-spherical cluster boundaries. To overcome the shortcoming, this paper introduces kernel methods into membrane clustering algorithms and proposes a kernel-based membrane clustering algorithm, KMCA. By using non-linear kernel function, samples in original data space are mapped to data points in a high-dimension feature space, and the data points are clustered by membrane clustering algorithms. Therefore, a data clustering problem is formalized as a kernel clustering problem. In KMCA algorithm, a tissue-like P system is designed to determine the optimal cluster centers for the kernel clustering problem. Due to the use of non-linear kernel function, the proposed KMCA algorithm can well deal with the data sets with non-spherical cluster boundaries. The proposed KMCA algorithm is evaluated on nine benchmark data sets and is compared with four existing clustering algorithms
    corecore